加入VIP 上傳考博資料 您的流量 增加流量 考博報班 每日簽到
   
主題 : 2009年全國優秀博士論文:雷達高分辨距離像目標識別方法研究
級別: 總版主
顯示用戶信息 
樓主  發表于: 2009-10-10   

2009年全國優秀博士論文:雷達高分辨距離像目標識別方法研究

作者姓名:杜蘭 kwud?2E  
  論文題目:雷達高分辨距離像目標識別方法研究 bpkwn<7-  
  作者簡介:杜蘭,女, 1980年3月出生,2001年8月師從于西安電子科技大學保錚教授(碩博連讀),于2007年6月獲博士學位(期間于2004年3月獲碩士學位,2005年7月評定為講師)。 @O}7XRJ_8  
gUR]{dq^'  
  中文摘要 : 5U"XY x@  
  高分辨距離像(HRRP)是用寬帶雷達信號獲取的目標散射點子回波在雷達射線上投影的向量和,它提供了目標散射點沿距離方向的分布情況,是目標重要的結構特征,對目標識別與分類十分有價值,因而成為雷達自動目標識別(RATR)領域研究的熱點。本論文主要圍繞著“十五”和“十一五”國防預研計劃項目“目標識別技術”(項目編號:413070501和51307060601)及國家自然科學基金項目“基于高距離分辨回波序列的雷達目標識別技術”(項目編號:60302009)的研究任務,從高分辨距離像的物理特性分析、特征提取和特征選擇以及分類器設計這三個基本層次展開對雷達高分辨距離像目標識別的相關理論與技術問題的研究。 GI7=x h  
  論文內容可概括為如下五部分: y#<MV H  
  第一部分,從目標的散射點模型出發,對高分辨距離像的物理特性進行了深入的研究,指出方位敏感性、平移敏感性和強度敏感性是雷達HRRP目標識別需要首先解決的三大問題。并針對最常用的模板匹配法,提出雷達高分辨距離像目標識別的基本思路,為后續的研究奠定基礎。 !'f3>W\   
  第二部分,研究雷達HRRP目標識別的特征提取和特征選擇方法,工作有以下三點。(1)針對高分辨距離像的平移敏感性問題,研究基于高階譜特征的雷達高分辨距離像目標識別。類似于近年來在目標識別領域中常用的在低維空間實現高維映射空間歐氏距離計算的核方法,本論文通過分析高階譜域歐氏距離和原始像域歐氏距離的關系,得出在原始像域計算高階譜域歐氏距離的方法,使高階譜特征在目標識別中的應用具有現實意義。(2)基于散射點模型理論,提出了一種利用距離像幅度起伏特性的特征提取新方法。新方法提取的加權距離像特征有效地融合了幀距離像的散射點強度分布像和方差像,反映了各個距離單元內目標散射點的分布情況,可以更好地描述目標散射特性。(3)基于Fisher可分性判據,提出了一種加權特征選擇方法。該方法根據雷達HRRP目標識別的具體特點,對HRRP的平移不變特征——功率譜特征采用基于Fisher判決率的迭代算法搜索最優權向量。與直接使用原始特征及現有的特征選擇方法相比,本論文提出的特征選擇方法既可以降維,又提高了識別性能,而且運算簡單。 / EMJSr  
  第三部分,詳細討論雷達HRRP的統計建模問題,主要工作涉及以下三個大的方面。一、討論在統計識別中解決HRRP樣本方位、平移和強度敏感性的方法,為HRRP的統計建模工作奠定基礎。二、在HRRP樣本各距離單元回波相互獨立的假設前提下,提出了一種基于Gamma和Gaussian Mixture兩種分布形式的獨立雙分布復合模型。三、進一步的研究表明HRRP樣本各距離單元回波相互獨立的假設并不完全成立,因此,我們又研究了更精確的基于HRRP樣本各距離單元回波相關統計特性的統計識別方法,具體工作包括以下兩點。(1)考慮到用于識別的HRRP樣本在2-范數強度歸一化后都位于單位超球面上,針對于冪次變換后趨于Joint-Gaussian分布的HRRP數據,提出了一種改進的基于子空間近似的統計識別方法。(2)研究發現HRRP樣本各距離單元回波的聯合分布近似因子分析(FA)模型描述的Joint-Gaussian分布,這表明在雷達HRRP統計識別中并不需要使用復雜的Joint-Gaussian Mixture模型(如FA Mixture模型),這大大降低了統計識別的難度。進而,針對基于FA模型的雷達HRRP統計識別,提出了一種自適應模型選擇算法。該算法可以同時解決因子個數選擇和方位幀劃分這兩個模型選擇問題。 G2#d $  
  第四部分,研究基于復數HRRP樣本的雷達目標識別方法。在分析復數HRRP樣本特性的基礎上,指出由于初相敏感性問題,原先適用于實數HRRP樣本的方位模板、識別方法和特征提取方法一般都不能直接用于基于復數HRRP的RATR,我們必須重新尋找既與復數HRRP樣本的初相無關又能利用其剩余相位信息的方法。進而,在識別方法方面,分析指出基于主分量分析(PCA)子空間的最小重構誤差法既可以回避復數HRRP樣本的初相敏感性問題又可以利用復數HRRP樣本的其余相位信息,因而,該識別方法適用于基于復數HRRP的RATR,并提出了該方法相應的平移匹配快速算法;此外,在特征提取方法方面,提出了一種用于復數HRRP樣本的初相無關特征提取方法,對實數HRRP樣本適用的識別方法、方位模板和預處理方法同樣適用于該復特征向量。因此,本論文的研究使基于復數HRRP的RATR成為可能。而且,基于實測數據的識別實驗表明,使用復數HRRP樣本可以取得比實數HRRP樣本更好的識別性能。 >az;!7~cD  
  第五部分,研究如何用少量的簡單分類器解決多類目標識別問題。由于HRRP樣本的方位敏感性,雷達HRRP目標識別是典型的多類目標識別問題。本論文提出了一種基于超立方體和超網格自組織映射(SOM)編碼的多類目標識別方法。該方法的優勢體現在:一方面將基于二分類的多類目標識別方法擴展為基于 分類的 ( )類目標識別方法;另一方面只需要少量的二分類或 分類分類器,因此,大大減小了多類目標識別對運算量和存儲量的需求。 s-W[ .r|  
MDRe(rF=  
  關鍵詞:  雷達自動目標識別 高分辨距離像 散射點模型 高階譜特征 基于參數化模型的統計識別方法 模型選擇 初相敏感性 多類目標識別 W"Jn(:&  
Qpt&3_   
評價一下你瀏覽此帖子的感受

精彩

感動

搞笑

開心

憤怒

無聊

灌水

  
關鍵詞: 博士
級別: 總版主
顯示用戶信息 
沙發  發表于: 2009-10-10   
Study on Radar HRRP Target Recognition g6sjc,`  
Du Lan l #@&~f[  
ABSTRACT 137Xl>nO  
    yu ,h \  
A high-resolution range profile (HRRP) is the amplitude of the coherent summations of the complex time returns from target scatterers in each range resolution cell, which represents the projection of the complex returned echoes from the target scattering centers onto the radar line-of-sight (LOS). It contains the target structure signatures, such as target size, scatterer distribution, etc., thereby radar HRRP target recognition has received intensive attention from the radar automatic target recognition (RATR) community. The theory and techniques for radar HRRP target recognition are researched from the three aspects, i.e. analysis on the physical property of HRRP samples, feature extraction and feature selection, and classification methods, in this dissertation, which are supported by Advanced Defense Research Programs of China (No. 413070501 and No. 51307060601) and National Science Foundation of China (No. 60302009). Sd:.KRTu.  
The main content of this dissertation is summarized as follows. )9P&=  
· Based on the scattering center model, the first part makes a detailed analysis on the physical property of HRRP samples, and points out that how to deal with the target-aspect, time-shift and amplitude-scale sensitivity of HRRP samples is a challenging task for radar HRRP target recognition. Then a framework for HRRP-based RATR by template matching method (TMM) is established, which forms the basis for the following study.   t#<KxwhcN  
· The second part focuses on feature extraction and feature selection for HRRP-based RATR. The main work includes: 1) Due to the huge storage requirement and the complex computation, higher-order spectra features receive less attention from RATR community. Similar to the well-known kernel method in automatic target recognition (ATR) community, in which the Euclidean distances in the high dimensional mapped space can be calculated in the low dimensional original space, a method for calculating the Euclidean distances in higher-order spectra feature space is proposed in this dissertation, which is performed in original HRRP space directly and can avoid calculating the higher-order spectra, effectively reducing the computation complexity and storage requirement. 2) According to the scattering center model, a new feature extraction method using the amplitude fluctuation property of HRRP samples is proposed in this dissertation. The weighted HRRP vector extracted by the new method can effectively fuse the corresponding frame’s stcatterer strength distributing profile and variance profile, and represent the scatterer distribution in every range cell, thereby it can describe the scattering property of a target better. 3) Based on the Fisher’s linear discriminant, a weighted feature selection method is proposed. According to the characteristics of radar HRRP target recognition, the proposed weighted feature selection method use the iterative algorithm based on the Fisher’s discriminant ratio to search the optimal weight for the time-shift invariant feature, i.e. power spectrum. Compared with using the raw feature vectors and some existing feature selection methods, the weighted feature selection method not only can reduce the feature dimension, but also can improve the recognition performance with low computational complexity.   MFg'YA2 /  
· The third part is contributed to radar HRRP statistical modeling. The main work concerns the following three aspects. Firstly, we make a detailed analysis on the effect of the three sensitivity problems of HRRP samples on statistical recognition, and propose our corresponding solution, which forms the basis for the study on radar HRRP statistical modeling. Secondly, under the hypothesis that the elements in an HRRP sample are statistically independent, we develop an independent statistical model comprising two distribution forms, i.e. Gamma distribution and Gaussian mixture distribution, to model echoes of different types of range cells as different distribution forms. Thirdly, theoretical analysis and our experimental results based on measured data show that the independence assumption is not true, thus we further make a study on the more accurate statistical recognition methods based on HRRP samples’ jointly statistical characteristics. Our work includes: 1) Different from general target recognition problems, L2 normalized samples are applied to HRRP-based RATR to deal with the amplitude-scale sensitivity problem, therefore, geometrically speaking, HRRP samples spread on a unit hypersphere. We propose a modified statistical recognition method based on subspace approximation for power transformed HRRP samples under the joint-Gaussian distribution hypothesis. 2) According to the experiments based on measured data, HRRP samples approximately follow the joint-Gaussian distribution described by factor analysis (FA) model. Therefore, we can apply FA model to radar HRRP statistical recognition rather than a joint-Gaussian mixture model, e.g. FA mixture model, which is a more accurate choice for modeling non-Gaussian distributed correlations in multidimensional data but with high learning complexity and large computation burden. Furthermore, an iterated algorithm for model selection of FA model in radar HRRP statistical recognition is proposed, which can automatically give the optimal aspect-frame boundaries and determine the optimal number of factors in each aspect-frame. }`9`JmNM  
· The forth part focuses on RATR using complex HRRP samples. Based on the analysis on the physical property of complex HRRP samples, we point out that the frame template, classification algorithm and feature extraction method for complex HRRP samples should be unvaried with the initial phases. In the existing classification methods, the principal component analysis (PCA)-based minimum reconstruction error approximation is independent of the initial phases yet exploits the remaining phase information in complex HRRP samples, therefore, this method can be used in complex HRRP-based RATR, and a fast time-shift compensation algorithm is proposed for this method. In addition, we propose a novel feature extraction method invariant with the initial phases for complex HRRP samples. The recognition algorithms, frame-template establishment methods and preprocessing methods used in the real HRRP-based RATR can also be applied to the proposed complex feature vector-based RATR. Therefore, based on the aforementioned research, complex HRRP-based RATR becomes practical. Furthermore, in the recognition experiments based on measured data, complex HRRP samples can obtain better recognition results than real HRRP samples.   vv 7+ >%   
· The fifth part is contributed to multicategory classification by a small number of simple classifiers. Due to the target-aspect sensitivity of HRRP samples, radar HRRP target recognition is a typical multicategory classification problem. We propose a multicategory classification method based on hypercube/hypergrid self-organization mapping (SOM) scheme. The advantageous of this method includes: 1) We can not only use binary classifiers but also -ary ( ) classifiers for -class problem; 2) The needed binary or -ary classifiers in this method are few, therefore, the computation complexity and storage requirement can be greatly reduced. G5{Ot>;*%  
   5#_tE<uM  
   agaq`^[(P  
XKq@]=\F  
Key words:   Radar automatic target recognition (RATR), High-resolution range profile (HRRP), Scattering center model, Higher-order spectra, Statistical recognition based on parametric models, Initial phase sensitivity, Multicategory classification
級別: 初級博友
顯示用戶信息 
板凳  發表于: 2011-08-12   
G+yL;G/  
您所需要的,正是我們擅長的!一鳴論文網 亚洲国产精品va在线观看麻豆